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1. INTRODUCTION
Recent reports on the extent of secondary electron contributions in

electron/photon stimulated desorption (ESD/PSD) appear to be contradictory.

Jaeger et al. (1) suggested that secondary electrons provided the dominant

contribution to the H' yield froa NM;IK( and called the process x~ray induced ESD
(XESD). Others have concluded that the XESD process is the dominant mechanism in
the PSD of N* and 0% lons from mixed condensed gases such as N3-03 (2) and fn the

PSD of H* fons from Hy/YbOy,~Sw (3). On the other hand, large differences were

found between the secondary electron yleld and the PSD Ot yield from 0/Cr
providing strong evidence for the domination of a direct photon excitation
mechanism (4). A similar conclusion was reached for the PSD of K* fons from
OH/T1, Cr, and Cu (5). Finally, a comparison of the ESD 0% yield from WO/Pt
(110), originating from molecularly adsorbed NO, revealed that the 0% yield begins
gnly at the 0 K level and indicates that only a direct core level process is
active (6).

One can make atteampts to explain some of th;:; apparently conflicting
reports. The evidence cited above clatming 8 dominant XESD role could possibly be
explained by other mechanisas (e.g., resonant hole delocalization (6) ia W3/03).
The appareat absence of the XESD sechanisa In other systems might be explained by
the low core levels studied in some of these syetems. For example, the Ti, Cr,
and Cu 3p core levels studied above have binding energies of only 30 to 80 eV

compared to the deeper N and 0 K levels around 400-550 eV. Regardless of the

explanation, the actual magnitude of the secondary electron contribution {n the -
ESD/PSD process 18 clearly not known. ‘;::

Qualitative estimates of the secondary electron contributions to the

desorption yield can be made. If a valence excitation mechanisa provides a large -

desorption cross section, one expects to see secondary electrons play a signifi-
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- ELECTRON STIMULATED DESORPTION AND THF ROLE OF BACKSCATTERED ELECTRONS
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Electron stimulated desorption (ESD) yields of fons and neutrals from
surfaces are expected to contain large contributions due to backscattered
electrons from the bulk. A procedure for deconvoluting these effects from
experimental yield data has been developed which includes contributions from both
true secondaries and backscattered primaries. The procedure allows for changes imn
the backscattered yield with primary energy which {s particularly necessary at low
. primary energies (10-40 eV) where most ESD thresholds occur. This method 1is
. applied to recently published excited OH neutral (0&‘1 yleld from 71021 Although

this deconvolution procedure reveals efgnificant contributfons from backscattered

electrons, more leportantly it also indicates that a significant yield arises from
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a direct non resonant excitation wechanism and not from secondary electrons. The
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i cant role at deeper core level energies. One also expects that systems with very

low desorption thresholds should exhihit large secondary desorption ylelds due to

the large number of secondary electrons at very low energy. Thus neutral or

negative fon desorption yields, which reveal lower desorption thresholds than

W e e e
»
oL,

positive {ons, should exhibit even larger secondary electron effects.

In this work we examine the secondary electron contributions to the excited
OH neutral (Ou*) yield from Ti0y as recently reported by Bermudez and Roffbauer
(7). This ESD desorption yleld has a sharp threshold at 11 eV relative to the
Fermi level. We report the first attempt at quantitatively determining the
secondary electron contribution by deconvoluting the backscattered electron
specttum from the measured ESD on* yield. The deconvoluted spectrum allows for
semi~quantitative interpretation of the ESD spectrum and thus provides for a
determination of the varfous mechanisas involved in the excited neutral desorptfon
process. A detailed interpretation of the ESD on* yield from Ti0O 1s reported
elsewhere (8). In Sec. 2 we describe the details of our procedure for obtaining a
backscattered spectrum as a function of priwmary energy. Results and a discussion

are presented in Sec. 3.

2. THE BACKSCATTERED SPECTRUM

The procedure for substraction or deconvolution of electron energy loss

effects from an Auger or photoelectron lineshape 13 well known (9). The

;; expression,

- N(E) = [L(Bp,e e (e )de, ()

;ﬂ mathematically describeg this relationship between N(E), the experimentally

%f measured spectrum, and N¢(E), the “true” or undistorted spectrum. The “response”
i function, L(Bp.c), is usually obtained from the backscattered or loss spectrus
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where the primary energy F, is chosen to be near the principal peak of the

REARY - RO

spectrum N(E). The deconvolution in Auger spectroscopy has normally been

.

accomplished using the van Cittert fteration procedure, although Fourfer analysis

techniques have also been used (9).

RS
*ose

The loss spectrum, L(B,.c). can be characterized as having true secondary,

SEC(Ep,c), redistributed primary, RP(BP.c), and elastically scattered, !S(lp),
contributions,
': L(Ep,e) = A(Ep)SEC(Ep,e) + B(EG)RP(Ey,c) + ES(Ey) )

Expreasions for SEC and RP have been derived previously from theoretical analysis

IO &F ERNENERCRCRAE)
‘ SRR

of the secondary cascade process and the Bethe expression for electron scattering

Tateta
S

9,

SEC(Fp,c) = e/[(e+E,) (c)™) &)

RP(Ep,c) = Ln{(F ¢ )/Ey)/1(Epe ) /Ep]" %)
The expression for SEC i{s essentially the Sickafus (10) expression (¢ + )™
multipled by an escape factor (¢/(c + Ey)), where ¢ and B, are the work function
and the escape probability parameters respectlv;?y. Here B, was chosed (9) to be
0.5. 1In RP, Bp and E), are the primary electron beam energy and the effective
binding energy of the valence band. The expressions for SEC and RP of course do

not reproduce any structure srising from Auger and characteristic energy losses;

thus, they approximate only the overall envelope of L(Ep.c). ES {s generally
:{ Caussian in shape, the width detersined by the resolution of the electron

analyzer. A(EV) and B(Ep) are coefficlents which depend on primary energy and

. relate the size of the secondary and redistributed primary contributions relative
to the elastfcally scattered peak.

:' With the differences noted below, Eq. (1) also describes the relstionship

i’ betveen the smeasured sand "true” ESD yleld. Rowever, two factors make the ESD

gituation significantly more difficult than in the Auger case. PFirst, the Auger
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electron energles are usually well abave 50 eV, in which case, one can ignore

SEC as well as the variation in B(Ep) so that L(Ep.s) can be approximated as
B[RP(ep—c)]. Second, Ny (E) should theoretically go to zero well below the main
Auger features, so B is usually deterained consistent with this criterfon (9).

The ESD OH" yleld has a threshold at 11 eV and its behavior at higher energies, in
the absence of coatributions from secondaries, is not generally known. Thus,
knowledge of SEC(E,.c), A(Ep) and B(E,) 1s required.

The proper choice of A and B is coaplicated by the nature of the ESD process
itself. Desorption may arise froam both the fncoming electrons, having total
current I,, as well as frowm the outgolag electroas as they travel through the
outer surface layer, where all desorption i1s assumed to originate. This 13 in
contrast to the Auger lineshape where the entire signal results from escaplng
electrons. Thus the appropriate choice for A and B cannot be determined directly
from the experimentally measured backscattered spectrum, but rather must be

related to the total yleld,

F
[ 4
§(E,) = L (L(Ep.e )/ T(Ep) Ide, 5)
and the rati{o of total secondaries to redistridbuted primaries,
E E
p p .
R(Ep) -A(Ep)£ SEC(Ep,¢ )dc/(l(El,)£ RP(E,, e )de ]+ ()

Knowledge of R and § allows A and B to be calculated.

The measurement of § is usually accomplished by collecting all of the
backscattered electrons over all angles and energies (11). As an alternate
procedure (12), adequate at higher energies (e.g., E, = 50 to 100 eV), one can
mseasure the current through an elcctrometer to ground when the sample s blased to
a relatively large positive voltage, V, (e.g., Vo = +300 Vo) and when the sample
Is biased slightly negative (e.g., V) = <6 V)c). § can then be calculated from

the cxpression,
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8 = (I(Vy) - I(V}))/1(Vy), m
which assumes that 1(V,) equals IP and I(V4) = I(V]) equals the total
backscattered spectrum. Eq. (7) thus assumes that the backscattered electron
yleld above the energy eV, is negligible (i.e., that the secondary electron
contribution is much larger than the redistributed primary and elastically
scattered contribution, which of course {s valid only at higher energies).

Our need for R as well as § suggested a third procedure for measuring §. Ve
recorded the backscattered apectrua from OH/T10; (prepared exactly as in the ESD
experiments (7)) at 15 values of Ep (50 to 200 eV at 10 eV intervals) using a
single-pass cylladrical mirror analyzer (CMA) equipped with a "Spiraltron”
electron multiplier (Bendix 4219). Spectra were recorded in both the 4[EN(E)]/dE
mode, using lock-in detection with Ip ~0.3-1.22 yA, and the EN(E) wode using
pulse~counting with Ip ~1-8 nA. A correction for the dependence of the detector
gain on energy was applied to the data using the results of Arnoldy et al. (13)
assuming electron Impact on the front-end cone of the multiplier. Integration of
the spectrum allows 6§ to be calculated from Eq. ¢5). I, was deteruined as above

(1.e., I, = 1(V,)) and § was normalized so that the maximua value (§545), which

p
occurred at ~200 eV, was equal to that measured directly as ia Eq. (7), Sgax ~1.2.
The normalization i1s required since, of course, the CMA collects only a fraction
of the total scattered electrons (f.e., only those entering the narrow acceptance
angle of the CMA). This procedure {s valid provided the backscattered spectrum is
reasonably isotropic. One advantage of this procedure is that it elisinstes the
problem at low energles inherent in Eq. (7), where 1(V,) and I(V)) are both
small.

It 8 considerably more difficult to determine R, and to our knowledge no

reports of R appear in the literature. We separated the SEC and RP contributfions

by fitting the expressions in Eqs. (3) and (4) to the total loss spectrus measured
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at 18C eV. Differences betwecen the fit and the experimental spectrum were then

added to one or the other contributions (e.g., Auger structure around 20 eV was
added to the SEC contribution and the characteristic loss structure around AE -30
eV as added to RP). The resultant contributinns are shown in Fig. (1). The
separation into SEC and RP at lower energles was accomplished by fitting the
separated contributions at 180 eV to the measured spectrum as suggested by Eq.
(2). The RP contribution was moved along the energy scale in each case since {t
depends on Ep ~ €; the SEC contribution was not moved in energy. Fig. (1)
1llustrates at 80 and 140 eV the remarkably good fits which were achieved
throughout the energy range 50-170 eV.

Data below 50 eV could not be obtained for either § or R because of focussing
problems and & decreasing gun current. In order to assist us in an extrapolation
down to 11 eV, we wade use of some backscattered spectra below 50 eV found for MgO
(14). 1In fact, to the best of our knowledge these are the only yleld and loss
spectral data below 50 eV available for any material. The Mg0 data below 30 eV
were taken with a LEED system; thus, all backscattered electrons were collected

for the determination of § (15). Fig. (2) shows the yield curve obtained below 30

eV from an epitaxial MgD layer on Mo. Thege data are compared with § obtained
from Eq. (7) above 50 eV from a similar MgO/Mo sample, and with §*4.5 obrained by
tntegra-tlon of L(E,,c) from OH/T10; as described above. The factor of 4.5 stamply
accounts for the higher yleld of MgO, but the variation with energy 1is

surprisingly similar. A comparison {s shown of the experimental curves with a

“universal”™ curve fit

8 = €25 gax(Bp/Enag)expl~2(Ep/Egar)l/?) (8)

proposed by Sternglass (11,16) to represent the yield function with Ep. Clearly

Eq. (8) overestimates § below Fy ... The structure in § below 30 eV apparently :u:::

arises from diffraction (15). -
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Results for § and R are shown In Fig. (3). Those above 50 eV are obtained
from OB/T102; those below 50 eV are extrapolated using the behavior of the Mgo/Mo

data as a gulde. The backscattered data from MgND/Mo shows that R gets very large

- as E, approaches zero. This may simply be due to our choice of divisfon into SEC ;f'{ﬂ

and RP, which becomes rather arbitrary at very low energies. Some structure may
be indicated in R around 100 eV, but we have drawn the best smooth curve through
the points. Any structure would not be critical in the deconvolution process, and
the smooth curve allows us to extrapolate to lower energy consistent with the
MgO/Mo data. These R and § curves were utilized along with Eqs. (1) and (2) to B E
deconvolute the ESD OH" yleld data from OH/T103. Since the resolutfon of the ESD 111,
spectra is llmited only by the thermal energy spread of the electron gua (~0.5 V .
eV), the experlmental ES was replaced by a gaussiaan of 0.5 eV width but with the

same area. STl

3. RESULTS AND DISCUSSION

Deconvolution of the measured ESD OH® yleld, as shown in Fig. (4), indicates
that the yleld intengity above 50 eV 13 not due entirely to backscattered
electrons. This indicates that a direct noaresonant excitatlion is partly

respongible for the i{ntensity above 50 eV. A detailed comparison, reported

elsevhere (8), of the OH' and H ylelds (17) reveals that the OH' yleld reflects -
primarily the nonresonant cross section. Fig. (4) indicates that the os* yleld
results from both resonant and nonresonant excitations.

Secondary electrons may of course produce desorption via both the resonant

and nonregonant mechanisms. Rowever, the resonant portion has a finite width with
some structure; thus, the secoandary electron contributions may more visibly
distort the resonant portion than the nonresonant portion. The latter is
relatively smooth and extends indefinitely to higher energy. Thus we substracted

the experimental OHY yleld shown in Fig. (5) (it reflects the nonresonant portion

o, e e
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with its secondary electron contributions) from the on* yield, leaving the

resonant portion with its secondary electron contrlbution (the latter Is also
- shown in Fig. (5)). 1In this subtraction procedure, the relative ou* and on*

intensities are fixed so that the deconvoluted resonant portion goes to zero at

. ; higher energles as one would expect for a resonant excitation. » '
Comparison of the resonant on* yield with the total 0~ yield from 0/Mo and :

0/W (18) reveals some similarity in the spectra. This suggests that the

0~ desorption yield results predominantly from resonant excitations and that the

resonant excitations are similar for 0/Mo or W and for OH/TLO;.

Specific electron assignments to the various peaks have been suggested and

reported elsewhere (8). Briefly, the three features around 17, 25 and 35 eV in
the ou* yleld are believed to result from totally resonant electron attachment,
f.e., 3al'l3d*2, Jal‘l3d‘v. and Jal“lv*Z excitatlons, where 3d* and v* are
antibonding orbitals or resonances in the conductfon band and 3a; is a ¢ bonding
OH orbital (19). The corresponding features in the 07 ylelds arise from gimilar
excitations out of the 0 2p orbitals. The intensity around 50 eV is belleved to
arise from ; resonant electron attachaent 3p'1v*631 followed by an Auger decay to
the v'zv'kal configuration, which fnitiates the desorption. The 3p core levels of i“-
Ti, Mo, and W all fall around 35 eV (20,21). The direct nonresonant on* yleld e
apparently arises from a nonresonant 3p"x core excitation or fonizatioa plus
shakeup. A 2 hole-1 electron final state in efther case can initlate the oH*
desorption. f*z
In conclusion, this work has shown a significant secondary electron -—-
contribution to the ESD OH* yield. More fmportantly, the results indicate that :
the yleld above 50 eV is not due eantirely to secondary electrons. Rather a
signiftcant yield also arlses from a direct nonresonant excitation in apparent
contrast to the 0~ yfeld from 0/Mo and W. Deconvolution of the resonant portfon

enables semi-quantitative interpretation of the spectrum (8).
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Flgure Captlons

1. Comparison of the measured backscatteced spectrun for OH/T10; at primary
energy E, = 140 eV (top) and 80 eV (bottom) to the best fit of Eq. (2). In Eq.

(2), SEC(c) and RP(Ep,c) vere obtafned from the E, = 180 eV backscattered spectrum

‘e,

where the separation into SEC and RP is described in the text.

ﬁ: s
L: 2. Top: The measured total electron yleld from a 35 A epitaxial MgO filw on Mo o
as reported in refs. 12 and 15. The § below 30 eV was obtalned by collecting the : -
h: total backscattered current; that above 30 eV was measured utilizing Eq. (7). -
21 Also shown is §%4.5 obtained in this work for OH/T107 by integrating L(Ep,c) and L
" normalizing as described in the text. The dashed line is a fit of Eq. (8) to the ; :
b . .
b: total Mg0/Mo yield. S
—
rf_ Bottom: Comparison of the “universal curve” with experiment over a broad LN
3 <.

energy range.

3. Plot of R and § as defined 1n Eqs. (5) and (6) respectively aund determined as

ag described in the text. -
T 4. Comparison of the measured ESD OH* yield for OH/T10; with the deconvoluted OH* [
. yield. e
' P
g S. Top: Comparison of the ESD on* yield for OR/TiO7 (ref. 7)) with the out yleld e
- (ref. 16)). The resonant OH* yield, as obtained by subtraction of the above two R
:;~ curves, and the deconsoluted resonant OH* are also shown. ’E::
) Bottom: The ESD 0~ yield from O/W and O/Mo as reported by Liu and Lichtman s

(ref. 18) is compared with the resonant OH* yield from Fig. 4.
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